
CHAPTER 9: VIRTUAL MEMORY

g Background

g Demand Paging

g Performance of Demand Paging

g Page Replacement

g Page-Replacement Algorithms

g Allocation of Frames

g Thrashing

g Other Considerations

g Demand Segmentation

Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994



Background

g Virtual memory − separation of user logical
memory from physical memory.

- Only part of the program needs to be in
memory for execution.

- Logical address space can therefore be much
larger than physical address space.

- Need to allow pages to be swapped in and out.

g Virtual memory can be implemented via:

- Demand paging

- Demand segmentation

Operating System Concepts, Addison-Wesley  1994 9.1 Silberschatz & Galvin  1994



Demand Paging

g Bring a page into memory only when it is needed.

- Less I/O needed

- Less memory needed

- Faster response

- More users

g Page is needed ⇒ reference to it

- invalid reference ⇒ abort

- not-in-memory ⇒ bring to memory

Operating System Concepts, Addison-Wesley  1994 9.2 Silberschatz & Galvin  1994



Valid−Invalid bit

g With each page table entry a valid−invalid bit is
associated (1 ⇒ in-memory, 0 ⇒ not-in-memory)

g Initially valid−invalid bit is set to 0 on all entries.

g Example of a page table snapshot.

..

valid-invalid bitframe #

.

0

0

0

1

1

1

1

page table

g During address translation, if valid−invalid bit in
page table entry is 0 ⇒ page fault.

Operating System Concepts, Addison-Wesley  1994 9.3 Silberschatz & Galvin  1994



Page Fault

1. If there is ever a reference to a page, first refer-
ence will trap to OS ⇒ page fault.

2. OS looks at another table to decide:

a) Invalid reference ⇒ abort.

b) Just not in memory.

3. Get empty frame.

4. Swap page into frame.

5. Reset tables, validation bit = 1.

6. Restart instruction:

- block move

- auto increment/decrement location

Operating System Concepts, Addison-Wesley  1994 9.4 Silberschatz & Galvin  1994



What happens if there is no free frame?

g Page replacement − find some page in memory,
but not really in use, swap it out.

⇒ algorithm

⇒ performance − want an algorithm which will
result in minimum number of page faults.

g Same page may be brought into memory several
times.

Operating System Concepts, Addison-Wesley  1994 9.5 Silberschatz & Galvin  1994



Performance of Demand Paging

g Page Fault Rate 0 ≤ p ≤ 1.0

if p = 0, no page faults

if p = 1, every reference is a fault

g Effective Access Time (EAT)

EAT = (1 - p ) × memory access

+ p (page fault overhead

+ [swap page out]

+ swap page in

+ restart overhead)

g Example:

- memory access time = 1 microsecond

- 50% of the time the page that is being replaced
has been modified and therefore needs to be
swapped out.

- Swap Page Time = 10 msec = 10,000 msec

- EAT = (1 - p ) × 1 + p (15000)

= 1 + 15000P (in msec)

Operating System Concepts, Addison-Wesley  1994 9.6 Silberschatz & Galvin  1994



Page Replacement

g Prevent over-allocation of memory by modifying
page-fault service routine to include page replace-
ment.

g Use modify (dirty) bit to reduce overhead of page
transfers − only modified pages are written to
disk.

g Page replacement completes separation between
logical memory and physical memory − large vir-
tual memory can be provided on a smaller physi-
cal memory.

Operating System Concepts, Addison-Wesley  1994 9.7 Silberschatz & Galvin  1994



Page-Replacement Algorithms

g Want lowest page-fault rate.

g Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults on that
string.

g In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Operating System Concepts, Addison-Wesley  1994 9.8 Silberschatz & Galvin  1994



First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

g 3 frames (3 pages can be in memory at a time per
process)

iiii
1 1 4 5iiii
2 2 1 3 9 page faultsiiii
3 3 2 4iiiic

c
c
c
c

c
c
c
c
c

g 4 frames
iiii

1 1 5 4iiii
2 2 1 5iiii
3 3 2 10 page faultsiiii
4 4 3iiiicc

c
c
c
c
c

cc
c
c
c
c
c

FIFO Replacement − Belady’s Anomaly

more frames ⇒/ less page faults

Operating System Concepts, Addison-Wesley  1994 9.9 Silberschatz & Galvin  1994



Optimal Algorithm

g Replace the page that will not be used for the
longest period of time.

g 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
iiii
1 4iiii
2 6 page faultsiiii
3iiii
4 5iiiicc

c
c
c
c
c

cc
c
c
c
c
c

g How do you know this?

g Used for measuring how well your algorithm per-
forms.

Operating System Concepts, Addison-Wesley  1994 9.10 Silberschatz & Galvin  1994



Least Recently Used (LRU) Algorithm
iiii
1 5iiii
2iiii
3 5 4iiii
4 3iiiicc

c
c
c
c
c

cc
c
c
c
c
c

g Counter implementation

- Every page entry has a counter; every time
page is referenced through this entry, copy the
clock into the counter.

- When a page needs to be changed, look at the
counters to determine which are to change

g Stack implementation − keep a stack of page
numbers in a double link form:

- Page referenced:

move it to the top

requires 6 pointers to be changed

- No search for replacement

Operating System Concepts, Addison-Wesley  1994 9.11 Silberschatz & Galvin  1994



LRU Approximation Algorithms

g Reference bit

- With each page associate a bit, initially = 0.

- When page is referenced bit set to 1.

- Replace the one which is 0 (if one exists). We
do not know the order, however.

g Second chance

- Need reference bit.

- Clock replacement.

- If page to be replaced (in clock order) has
reference bit = 1, then:

a) set reference bit 0.

b) leave page in memory.

c) replace next page (in clock order), subject to
same rules.

Operating System Concepts, Addison-Wesley  1994 9.12 Silberschatz & Galvin  1994



g Counting Algorithms − keep a counter of the
number of references that have been made to each
page.

- LFU Algorithm: replaces page with smallest
count.

- MFU Algorithm: based on the argument that
the page with the smallest count was probably
just brought in and has yet to be used.

g Page-Buffering Algorithm − desired page is read
into a free frame from the pool before the victim
is written out.

Operating System Concepts, Addison-Wesley  1994 9.13 Silberschatz & Galvin  1994



Allocation of Frames

g Each process needs minimum number of pages.

Example: IBM 370 − 6 pages to handle
SS MOVE instruction:

a) Instruction is 6 bytes, might span 2 pages.

b) 2 pages to handle from.

c) 2 pages to handle to.

g Two major allocation schemes:

- fixed allocation

- priority allocation

Operating System Concepts, Addison-Wesley  1994 9.14 Silberschatz & Galvin  1994



g Fixed allocation

- Equal allocation

If 100 frames and 5 processes, give each 20
pages.

- Proportional allocation

Allocate according to the size of process.

b si = size of process pi

b S = Σ si

b m = total number of frames

b ai = allocation for pi =
S

sihhh × m

Example : m = 64

s 1 = 10

s 2 = 127

a 1 =
137
10hhhh × 64 ∼∼ 5

a 2 =
137
127hhhh × 64 ∼∼ 59

Operating System Concepts, Addison-Wesley  1994 9.15 Silberschatz & Galvin  1994



g Priority allocation

- Use a proportional allocation scheme using
priorities rather than size.

- If process Pi generates a page fault,

b select for replacement one of its frames.

b select for replacement a frame from a
process with lower priority number.

Operating System Concepts, Addison-Wesley  1994 9.16 Silberschatz & Galvin  1994



Global versus local allocation

g Global replacement − process selects a replace-
ment frame from the set of all frames; one pro-
cess can take a frame from another.

g Local replacement − each process selects from
only its own set of allocated frames.

Operating System Concepts, Addison-Wesley  1994 9.17 Silberschatz & Galvin  1994



Thrashing

g If a process does not have ‘‘enough’’ pages, the
page-fault rate is very high:

⇒ low CPU utilization.

⇒ operating system thinks that it needs to
increase the degree of multiprogramming.

⇒ another process added to the system.

g Thrashing ≡ a process is busy swapping pages in
and out.

Operating System Concepts, Addison-Wesley  1994 9.18 Silberschatz & Galvin  1994



utilization

degree of multiprogramming

CPU

g Why does paging work?

Locality model

- Process migrates from one locality to another.

- Localities may overlap.

g Why does thrashing occur?

Σ size of locality > total memory size

Operating System Concepts, Addison-Wesley  1994 9.19 Silberschatz & Galvin  1994



Working-Set Model

g ∆ ≡ working-set window ≡ a fixed number of
page references

Example: 10,000 instruction

g WSSi − working set of process Pi =

total number of pages referenced in the most
recent ∆ (varies in time)

If ∆ too small will not encompass entire locality.

If ∆ too large will encompass several localities.

If ∆ = ∞ ⇒ will encompass entire program.

g D = Σ WSSi ≡ total demand frames

g If D > m ⇒ thrashing.

g Policy if D > m , then suspend one of the
processes.

Operating System Concepts, Addison-Wesley  1994 9.20 Silberschatz & Galvin  1994



How do you keep track of the working set?

g Approximate with:

interval timer + a reference bit

g Example:

∆ = 10,000

- Timer interrupts after every 5000 time units.

- Keep in memory 2 bits for each page.

- Whenever a timer interrupts copy and sets the
values of all reference bits to 0.

- If one of the bits in memory = 1 ⇒ page in
working set.

Not completely accurate (why?)

Improve = 10 bits and interrupt every 1000 time
units

Operating System Concepts, Addison-Wesley  1994 9.21 Silberschatz & Galvin  1994



Page-Fault Frequency Scheme

frames
number of
increase

number of frames

upper bound

lower bound

decrease
number of
frames

page
fault
rate

g Establish ‘‘acceptable’’ page-fault rate.

- If actual rate too low, process loses frame.

- If actual rate too high, process gains frame.

Operating System Concepts, Addison-Wesley  1994 9.22 Silberschatz & Galvin  1994



Other Considerations

1. Prepaging

2. Page size selection

- fragmentation

- table size

- I/O overhead

- locality

3. Program structure

- Array A[1024,1024] of integer

- Each row is stored in one page

- One frame

- Program 1 for j := 1 to 1024 do
for i := 1 to 1024 do

A[i , j ] := 0;

1024 × 1024 page faults

- Program 2 for i := 1 to 1024 do
for j := 1 to 1024 do

A[i , j ] := 0;

1024 page faults

4. I/O interlock and addressing

Operating System Concepts, Addison-Wesley  1994 9.23 Silberschatz & Galvin  1994



Demand Segmentation − used when insufficient
hardware to implement demand paging.

g OS/2 allocates memory in segments, which it
keeps track of through segment descriptors.

g Segment descriptor contains a valid bit to indicate
whether the segment is currently in memory.

- If segment is in main memory, access contin-
ues,

- If not in memory, segment fault.

Operating System Concepts, Addison-Wesley  1994 9.24 Silberschatz & Galvin  1994



CHAPTER 10: FILE-SYSTEM INTERFACE

g File Concept

g Access Methods

g Directory Structure

g Protection

g Consistency Semantics

Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994



File Concept

g Contiguous logical address space

g Types:

- Data

numeric

character

binary

- Program

source

object (load image)

- Documents

Operating System Concepts, Addison-Wesley  1994 10.1 Silberschatz & Galvin  1994



File Structure

g None - sequence of words, bytes

g Simple record structure

- Lines

- Fixed length

- Variable length

g Complex Structures

- Formatted document

- Relocatable load file

Can simulate last two with first method by inserting
appropriate control characters.

Who decides:

Operating system

Program

Operating System Concepts, Addison-Wesley  1994 10.2 Silberschatz & Galvin  1994



g File Attributes

- Name − only information kept in human-
readable form.

- Type − needed for systems that support dif-
ferent types.

- Location − pointer to file location on device.

- Size − current file size.

- Protection − controls who can do reading,
writing, executing.

- Time, date, and user identification − data for
protection, security, and usage monitoring.

g Information about files are kept in the directory
structure, which is maintained on the disk.

Operating System Concepts, Addison-Wesley  1994 10.3 Silberschatz & Galvin  1994



File Operations

g create

g write

g read

g reposition within file − file seek

g delete

g truncate

g open(Fi ) − search the directory structure on disk
for entry Fi , and move the content of entry to
memory.

g close(Fi ) − move the content of entry Fi in
memory to directory structure on disk.

Operating System Concepts, Addison-Wesley  1994 10.4 Silberschatz & Galvin  1994



File Types − name.extension

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
File type Usual extension Functioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Executable exe, com, bin ready-to-run machine-
or none language programiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Object obj, o compiled, machine lan-
guage, not linkediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Source code c, p, pas, f77, source code in various lan-
asm, a guagesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Batch bat, sh commands to the com-
mand interpreteriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Text txt, doc textual data, documentsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Word processor wp, tex, rrf, various word-processor

etc formatsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Library lib, a libraries of routines for

programmersiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Print or view ps, dvi, gif ASCII or binary file in a

format for printing or
viewingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storageiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Operating System Concepts, Addison-Wesley  1994 10.5 Silberschatz & Galvin  1994



Access Methods

g Sequential Access

read next
write next
reset

no read after last write

(rewrite)

g Direct Access

read n
write n
position to n

read next
write next

rewrite n

n = relative block number

Operating System Concepts, Addison-Wesley  1994 10.6 Silberschatz & Galvin  1994



Directory Structure − a collection of nodes contain-
ing information about all files.

Directory

Files

F1 F2 F3 F4

Fn

g Both the directory structure and the files reside on
disk.

g Backups of these two structures are kept on tapes.

Operating System Concepts, Addison-Wesley  1994 10.7 Silberschatz & Galvin  1994



Information in a device directory:

g Name

g Type

g Address

g Current length

g Maximum length

g Date last accessed (for archival)

g Date last updated (for dump)

g Owner ID (who pays)

g Protection information (discuss later)

Operating System Concepts, Addison-Wesley  1994 10.8 Silberschatz & Galvin  1994



Operations performed on directory:

g Search for a file

g Create a file

g Delete a file

g List a directory

g Rename a file

g Traverse the file system

Operating System Concepts, Addison-Wesley  1994 10.9 Silberschatz & Galvin  1994



Organize the directory (logically) to obtain:

g Efficiency − locating a file quickly.

g Naming − convenient to users.

- Two users can have same name for different
files.

- The same file can have several different names.

g Grouping − logical grouping of files by proper-
ties, e.g., all Pascal programs, all games, ...

Operating System Concepts, Addison-Wesley  1994 10.10 Silberschatz & Galvin  1994



Single-Level Directory − a single directory for all
users.

files

directory

...

...

type of file
location

name

g Naming problem

g Grouping problem

Operating System Concepts, Addison-Wesley  1994 10.11 Silberschatz & Galvin  1994



Two-Level Directory − separate directory for each
user.

jimavi

CBA BA

avi/A jim/A

subdirectories

root

g Path name

g Can have the same file name for different user

g Efficient searching

g No grouping capability

Operating System Concepts, Addison-Wesley  1994 10.12 Silberschatz & Galvin  1994



Tree-Structured Directories

ch16ch1

dbos

bookspapersprograms

PL1fortranpascal

avi

g Efficient searching

g Grouping capability

g Current directory (working directory)

cd /avi/books/os

type ch1

Operating System Concepts, Addison-Wesley  1994 10.13 Silberschatz & Galvin  1994



g Absolute or relative path name

g Creating a new file is done in current directory.

g Delete a file

rm <file-name>

g Creating a new subdirectory is done in current
directory.

mkdir <dir-name>

Example: if in current directory /avi/books

mkdir modula

books

modulaos db

g Deleting ‘‘books’’ ⇒ deleting the entire subtree
rooted by ‘‘books’’.

Operating System Concepts, Addison-Wesley  1994 10.14 Silberschatz & Galvin  1994



Acyclic-Graph Directories − have shared subdirec-
tories and files.

A X

YB

C

D

link

/A/B/C/D and /X/Y

g Two different names (aliasing)

g If A deletes D ⇒ dangling pointer.

Solutions:

- Backpointers, so we can delete all pointers.

Variable size records a problem.

- Backpointers using a daisy chain organization.

- Entry-hold-count solution.

Operating System Concepts, Addison-Wesley  1994 10.15 Silberschatz & Galvin  1994



General Graph Directory

g How do we guarantee no cycles?

- Allow only links to file not subdirectories.

- Garbage collection.

- Every time a new link is added use a cycle
detection algorithm to determine whether it is
OK.

Operating System Concepts, Addison-Wesley  1994 10.16 Silberschatz & Galvin  1994



Protection

g File owner/creator should be able to control:

- what can be done

- by whom

g Types of access

- Read

- Write

- Execute

- Append

- Delete

- List

Operating System Concepts, Addison-Wesley  1994 10.17 Silberschatz & Galvin  1994



Access Lists and Groups

g Mode of access: read, write, execute

g Three classes of users
RWX

a) owner access 7 ⇒ 1 1 1
RWX

b) group access 6 ⇒ 1 1 0
RWX

c) public access 1 ⇒ 0 0 1

g Ask manager to create a group (unique name),
say G , and add some users to the group.

g For a particular file (say game) or subdirectory,
define an appropriate access.

game761chmod

publicgroupowner

g Attach a group to a file

chgrp G game

Operating System Concepts, Addison-Wesley  1994 10.18 Silberschatz & Galvin  1994



CHAPTER 11: FILE-SYSTEM IMPLEMENTATION

g File-System Structure

g Allocation Methods

g Free-Space Management

g Directory Implementation

g Efficiency and Performance

g Recovery

Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994



File-System Structure

g File structure

- Logical storage unit

- Collection of related information

g File system resides on secondary storage (disks).

g File system organized into layers.

g File control block − storage structure consisting
of information about a file.

Operating System Concepts, Addison-Wesley  1994 11.1 Silberschatz & Galvin  1994



Contiguous Allocation − each file occupies a set of
contiguous blocks on the disk.

g Simple − only starting location (block #) and
length (number of blocks) are required.

g Random access.

g Wasteful of space (dynamic storage-allocation
problem).

g Files cannot grow.

g Mapping from logical to physical.

LA/512
Q

R

- Block to be accessed = Q + starting address

- Displacement into block = R

Operating System Concepts, Addison-Wesley  1994 11.2 Silberschatz & Galvin  1994



Linked Allocation − each file is a linked list of disk
blocks; blocks may be scattered anywhere on the
disk.

block = pointer

g Allocate as needed, link together.

Example: File starts at block 9

25

-1

16

10

1

26:

18:

10:

2:

25:

17:

9:

1:

24:

16:

8:

0:

Operating System Concepts, Addison-Wesley  1994 11.3 Silberschatz & Galvin  1994



Linked Allocation (continued)

g Simple − need only starting address

g Free-space management system − no waste of
space

g No random access

g Mapping

LA/511
R

Q

- Block to be accessed is the Qth block in the
linked chain of blocks representing the file.

- Displacement into block = R + 1

g File-allocation table (FAT) − disk-space alloca-
tion used by MS-DOS and OS/2.

Operating System Concepts, Addison-Wesley  1994 11.4 Silberschatz & Galvin  1994



Indexed Allocation − brings all pointers together
into the index block.

index table

index table

9

16

1

10

25

-1

-1

-1

26:

18:

10:

2:

25:

17:

9:

1:

24:

16:

8:

0:

Operating System Concepts, Addison-Wesley  1994 11.5 Silberschatz & Galvin  1994



Indexed Allocation (continued)

g Need index table

g Random access

g Dynamic access without external fragmentation,
but have overhead of index block.

g Mapping from logical to physical in a file of max-
imum size of 256K words and block size of 512
words. We need only 1 block for index table.

LA/512 < R

Q

- Q = displacement into index table

- R = displacement into block

Operating System Concepts, Addison-Wesley  1994 11.6 Silberschatz & Galvin  1994



Indexed Allocation − mapping (continued)

g Mapping from logical to physical in a file of
unbounded length (block size of 512 words).

- Linked scheme − Link blocks of index tables
(no limit on size).

LA/(512×511) < R 1

Q 1

b Q 1 = block of index table

b R 1 is used as follows:

R 1/512 < R 2

Q 2

b Q 2 = displacement into block of index table

b R 2 = displacement into block of file

Operating System Concepts, Addison-Wesley  1994 11.7 Silberschatz & Galvin  1994



Indexed Allocation − mapping (continued)

- Two-level index (maximum file size is 5123)

LA/(512×512) < R 1

Q 1

b Q 1 = displacement into outer-index
b R 1 is used as follows:

R 1/512 < R 2

Q 2

b Q 2 = displacement into block of index table
b R 2 = displacement into block of file

...

outer-index

index table file

Operating System Concepts, Addison-Wesley  1994 11.8 Silberschatz & Galvin  1994



Indexed Allocation − mapping (continued)

- Combined scheme: UNIX (4K bytes per block)

indirect

indirect

indirect

.

0

.

.

..

...
.

block

single

14
13
12
11

1
2

.

.

.

..

...
.

.

.. ...

double

block

triple

block

b directly accessed 48K bytes
b single indirection 222 bytes
b double indirection 232 bytes

Operating System Concepts, Addison-Wesley  1994 11.9 Silberschatz & Galvin  1994



Free-Space Management

g Bit vector (n blocks)

n-10 1 2
- -

bit[i ] =
I
K
L 1

0

⇒
⇒

block[i ] occupied

block[i ] free

- Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

- Bit map requires extra space.

Ex:block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218

- Easy to get contiguous files

Operating System Concepts, Addison-Wesley  1994 11.10 Silberschatz & Galvin  1994



g Need to protect:

- Pointer to free list

- Bit map
b Must be kept on disk.
b Copy in memory and disk may differ.
b Cannot allow for block[i ] to have a situa-

tion where bit[i ] = 1 in memory and bit[i ] =
0 on disk.

Solution:

1) Set bit[i ] = 1 in disk.

2) Allocate block[i ].

3) Set bit[i ] = 1 in memory.

g Linked list (free list)

- Cannot get contiguous space easily

- No waste of space

g Grouping

g Counting

Operating System Concepts, Addison-Wesley  1994 11.11 Silberschatz & Galvin  1994



Directory Implementation

g Linear list of file names with pointers to the data
blocks.

- simple to program

- time-consuming to execute

g Hash Table − linear list with hash data structure.

- decreases directory search time

- collisions − situations where two file names
hash to the same location

- fixed size

Operating System Concepts, Addison-Wesley  1994 11.12 Silberschatz & Galvin  1994



Efficiency and Performance

g Efficiency dependent on:

- disk allocation and directory algorithms

- types of data kept in file’s directory entry

g Performance

- disk cache − separate section of main memory
for frequently used blocks

- free-behind and read-ahead − techniques to
optimize sequential access

- improve PC performance by dedicating section
of memory as virtual disk, or RAM disk

Operating System Concepts, Addison-Wesley  1994 11.13 Silberschatz & Galvin  1994



Recovery

g Consistency checker − compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies.

g Use system programs to back up data from disk to
another storage device (floppy disk, magnetic
tape).

g Recover lost file or disk by restoring data from
backup.

Operating System Concepts, Addison-Wesley  1994 11.14 Silberschatz & Galvin  1994



CHAPTER 12: SECONDARY-STORAGE STRUCTURE

g Disk Structure

g Disk Scheduling

g Disk Management

g Swap-Space Management

g Disk Reliability

g Stable-Storage Implementation

Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994



Disk Structure

g A disk can be viewed as an array of blocks.

Bn-1

B1

B0

..

.

g There exists a mapping scheme from logical
block address Bi to physical address (track, sec-
tor).

- Smallest storage allocation area is a block.

- Internal fragmentation on block.

Operating System Concepts, Addison-Wesley  1994 12.1 Silberschatz & Galvin  1994



Disk Scheduling

g Disk Requests - Track/Sector

- Seek

- Latency

- Transfer

g Minimize Seek Time

g Seek Time ≈ Seek Distance

g A number of different algorithms exist. We illus-
trate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

Operating System Concepts, Addison-Wesley  1994 12.2 Silberschatz & Galvin  1994



g FCFS

183124122986765533714

g SSTF

183124122986765533714

Operating System Concepts, Addison-Wesley  1994 12.3 Silberschatz & Galvin  1994



g SCAN

183124122986765533714

g C-SCAN

1990 183124122986765533714

Operating System Concepts, Addison-Wesley  1994 12.4 Silberschatz & Galvin  1994



g LOOK

183124122986765533714

g C-LOOK

183124122986765533714

Operating System Concepts, Addison-Wesley  1994 12.5 Silberschatz & Galvin  1994



Disk Management

g Disk formatting

- physical

- logical

g Boot block initializes system.

g Need methods to detect and handle bad blocks.

Operating System Concepts, Addison-Wesley  1994 12.6 Silberschatz & Galvin  1994



Swap-Space Management

g Swap-space use

g Swap-space location

- normal file system

- separate disk partition

g Swap-space management

- 4.3BSD allocates swap space when process
starts (holds text segment and data segment).

- Kernel uses swap maps to track swap-space
use.

Operating System Concepts, Addison-Wesley  1994 12.7 Silberschatz & Galvin  1994



Disk Reliability

g Disk striping

g RAID

- Mirroring or shadowing keeps duplicate of
each disk.

- Block interleaved parity.

Operating System Concepts, Addison-Wesley  1994 12.8 Silberschatz & Galvin  1994



Stable-Storage Implementation

g Write-ahead log scheme requires stable storage.

g To implement stable storage:

- Replicate information on more than one non-
volatile storage media with independent failure
modes.

- Update information in a controlled manner to
ensure that failure during data transfer does not
damage information.

Operating System Concepts, Addison-Wesley  1994 12.9 Silberschatz & Galvin  1994



CHAPTER 13: PROTECTION

g Goals of Protection

g Domain of Protection

g Access Matrix

g Implementation of Access Matrix

g Revocation of Access Rights

g Capability-Based Systems

g Language-Based Protection

Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994



Protection

g Operating system consists of a collection of
objects, hardware or software.

g Each object has a unique name and can be
accessed through a well-defined set of operations.

g Protection problem − ensure that each object is
accessed correctly and only by those processes
that are allowed to do so.

Operating System Concepts, Addison-Wesley  1994 13.1 Silberschatz & Galvin  1994



Domain Structure

g Access-right = <object-name, rights-set>

Rights-set is a subset of all valid operations that
can be performed on the object.

g Domain = set of access-rights

AR8

AR7
AR6AR5

AR4

AR3
AR2
AR1

D3D2D1

AR1 = <file_A, {Read,Write}>

AR8 = <file_A, {Read}>

Operating System Concepts, Addison-Wesley  1994 13.2 Silberschatz & Galvin  1994



Domain Implementation

g System consists of 2 domains:

- user

- supervisor

g UNIX

- Domain = user-id

- Domain switch accomplished via file system.

b Each file has associated with it a domain bit
(setuid bit).

b When file is executed and setuid = on, then
user-id is set to owner of the file being exe-
cuted. When execution completes user-id is
reset.

g Multics Rings

- Let Di and Dj be any two domain rings.

If j < i ⇒ Di ⊆ Dj .

-
...

0
1

n

Operating System Concepts, Addison-Wesley  1994 13.3 Silberschatz & Galvin  1994



Access Matrix

g Rows − domains

g Columns − domains + objects

g Each entry − Access rights

Operator names

print

read

read

read

write

read

domain
printer

execute

write
readD4

D3

D2

D1

F3F2F1

object

Operating System Concepts, Addison-Wesley  1994 13.4 Silberschatz & Galvin  1994



Use of Access Matrix

g If a process in Domain Di tries to do "op" on
object Oj , then "op" must be in the access matrix.

g Can be expanded to dynamic protection.

- Operations to add, delete access rights.

- Special access rights:

b owner of Oi

b copy op from Oi to Oj

b control − switch from domain Di to Dj

Operating System Concepts, Addison-Wesley  1994 13.5 Silberschatz & Galvin  1994



g Access matrix design separates mechanism from
policy.

- Mechanism − operating system provides
Access-matrix + rules.

It ensures that the matrix is only manipulated
by authorized agents and that rules are strictly
enforced.

- Policy − user dictates policy.

Who can access what object and in what mode.

Operating System Concepts, Addison-Wesley  1994 13.6 Silberschatz & Galvin  1994



Implementation of Access Matrix

g Each column = Access-control list for one object

Defines who can perform what operation.

Domain 1 = Read,Write

Domain 2 = Read

Domain 3 = Read
.
.
.

g Each Row = Capability List (like a key)

For each domain, what operations allowed on
what objects.

Object 1 − Read

Object 4 − Read,Write,Execute

Object 5 − Read,Write,Delete,Copy

Operating System Concepts, Addison-Wesley  1994 13.7 Silberschatz & Galvin  1994



Revocation of Access Rights

g Access List − Delete access rights from access
list.

- simple

- immediate

g Capability List − Scheme required to locate capa-
bility in the system before capability can be
revoked.

- Reacquisition

- Back-pointers

- Indirection

- Keys

Operating System Concepts, Addison-Wesley  1994 13.8 Silberschatz & Galvin  1994



Capability-Based Systems

g Hydra

- Fixed set of access rights known to and inter-
preted by the system.

- Interpretation of user-defined rights performed
solely by user’s program; system provides
access protection for the use of these rights.

g Cambridge CAP System

- Data capability − provides standard read,
write, execute of individual storage segments
associated with object.

- Software capability −interpretation left to the
subsystem, through its protected procedures.

Operating System Concepts, Addison-Wesley  1994 13.9 Silberschatz & Galvin  1994



Language-Based Protection

g Specification of protection in a programming
language allows the high-level description of pol-
icies for the allocation and use of resources.

g Language implementation can provide software
for protection enforcement when automatic
hardware-supported checking is unavailable.

g Interpret protection specifications to generate
calls on whatever protection system is provided
by the hardware and the operating system.

Operating System Concepts, Addison-Wesley  1994 13.10 Silberschatz & Galvin  1994



CHAPTER 14: SECURITY

g The Security Problem

g Authentication

g Program Threats

g System Threats

g Threat Monitoring

g Encryption

Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994



The Security Problem

g Security must consider external environment of
the system, and protect it from:

- unauthorized access.

- malicious modification or destruction.

- accidental introduction of inconsistency.

g Easier to protect against accidental than malicious
misuse.

Operating System Concepts, Addison-Wesley  1994 14.1 Silberschatz & Galvin  1994



Authentication

g User identity most often established through pass-
words, can be considered a special case of either
keys or capabilities.

g Passwords must be kept secret.

- Frequent change of passwords.

- Use of ‘‘non-guessable’’ passwords.

- Log all invalid access attempts.

Operating System Concepts, Addison-Wesley  1994 14.2 Silberschatz & Galvin  1994



Program Threats

g Trojan Horse

- Code segment that misuses its environment.

- Exploits mechanisms for allowing programs
written by users to be executed by other users.

g Trap Door

- Specific user identifier or password that cir-
cumvents normal security procedures.

- Could be included in a compiler.

Operating System Concepts, Addison-Wesley  1994 14.3 Silberschatz & Galvin  1994



System Threats

g Worms − use spawn mechanism; standalone pro-
gram.

g Internet worm

- Exploited UNIX networking features (remote
access) and bugs in finger and sendmail pro-
grams.

- Grappling hook program uploaded main worm
program.

g Viruses − fragment of code embedded in a legiti-
mate program.

- Mainly effect microcomputer systems.

- Downloading viral programs from public bul-
letin boards or exchanging floppy disks con-
taining an infection.

- Safe computing.

Operating System Concepts, Addison-Wesley  1994 14.4 Silberschatz & Galvin  1994



Threat Monitoring

g Check for suspicious patterns of activity − i.e.,
several incorrect password attempts may signal
password guessing.

g Audit log − records the time, user, and type of all
accesses to an object; useful for recovery from a
violation and developing better security measures.

g Scan the system periodically for security holes;
done when the computer is relatively unused.
Check for:

- Short or easy-to-guess passwords

- Unauthorized set-uid programs

- Unauthorized programs in system directories

- Unexpected long-running processes

- Improper directory protections

- Improper protections on system data files

- Dangerous entries in the program search path
(Trojan horse)

- Changes to system programs; monitor check-
sum values

Operating System Concepts, Addison-Wesley  1994 14.5 Silberschatz & Galvin  1994



Encryption

g Encrypt clear text into cipher text.

g Properties of good encryption technique:

- Relatively simple for authorized users to
encrypt and decrypt data.

- Encryption scheme depends not on the secrecy
of the algorithm but on a parameter of the
algorithm called the encryption key.

- Extremely difficult for an intruder to determine
the encryption key.

g Data Encryption Standard substitutes characters
and rearranges their order on the basis of an
encryption key provided to authorized users via a
secure mechanism. Scheme only as secure as the
mechanism.

Operating System Concepts, Addison-Wesley  1994 14.6 Silberschatz & Galvin  1994



g Public-key encryption based on each user having
two keys:

- public key − published key used to encrypt
data.

- private key − key known only to individual
user used to decrypt data.

g Must be an encryption scheme that can be made
public without making it easy to figure out the
decryption scheme.

- Efficient algorithm for testing whether or not a
number is prime.

- No efficient algorithm is known for finding the
prime factors of a number.

Operating System Concepts, Addison-Wesley  1994 14.7 Silberschatz & Galvin  1994



CHAPTER 15: NETWORK STRUCTURES

g Background

g Motivation

g Topology

g Network Types

g Communication

g Design Strategies

Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994



Background − general structure

g Nodes

- Central processing unit

- Main memory

- Locally-attached disks

g Network

processors

disk

disk

node N

processors

disk

disk

...

disk

disk

processors

node 1

processors

disk

disk

node 3

node 2

Network

Operating System Concepts, Addison-Wesley  1994 15.1 Silberschatz & Galvin  1994



Background − node types

g Mainframes (IBM3090, etc.)

- example applications:
b airline reservations
b banking systems

- many large attached disks

g Workstations (Sun, Apollo, Microvax, RISC6000,
etc.)

- example applications:
b computer-aided design
b office-information systems
b private databases

- zero, one or two medium size disks

g Personal Computers

- example applications:
b office information systems
b small private databases

- zero or one small disk

Operating System Concepts, Addison-Wesley  1994 15.2 Silberschatz & Galvin  1994



Motivation

g Resource sharing

- sharing and printing files at remote sites

- processing information in a distributed data-
base

- using remote specialized hardware devices

g Computation speedup − load sharing

g Reliability − detect and recover from site failure,
function transfer, reintegrate failed site

g Communication − message passing

Operating System Concepts, Addison-Wesley  1994 15.3 Silberschatz & Galvin  1994



Topology

The sites in the system can be physically connected
in a variety of ways. They are compared with
respect to the following criteria:

g Basic cost. How expensive is it to link the various
sites in the system?

g Communication cost. How long does it take to
send a message from site A to site B?

g Reliability. If a link or a site in the system fails,
can the remaining sites still communicate with
each other?

The various topologies are depicted as graphs whose
nodes correspond to sites. An edge from node A to
node B corresponds to a direct connection between
the two sites.

Operating System Concepts, Addison-Wesley  1994 15.4 Silberschatz & Galvin  1994



Topology (continued)

network
partially connected

network
fully connected

F

E D

C

BA
A

B C

DE F

DC

B

A A

B

C

D

E

F
E

F

tree structured network star network

Operating System Concepts, Addison-Wesley  1994 15.5 Silberschatz & Galvin  1994



Topology (continued)

B

C

DE

F

ring network

A

shared bus network (Ethernet)

bus

E

D

C

B

A

Operating System Concepts, Addison-Wesley  1994 15.6 Silberschatz & Galvin  1994



Network Types

g Local-Area Network (LAN) − designed to cover
small geographical area.

- Multiaccess bus, ring, or star network.

- Speed ˜ 10 megabits/second, or higher.

- Broadcast is fast and cheap.

- Nodes:
b usually workstations and/or personal com-

puters
b a few (usually one or two) mainframes

g Wide-Area Network (WAN) − links geographi-
cally separated sites.

- Point-to-point connections over long-haul lines
(often leased from a phone company).

- Speed ˜ 100 kilobits/second.

- Broadcast usually requires multiple messages.

- Nodes:
b usually a high percentage of mainframes

Operating System Concepts, Addison-Wesley  1994 15.7 Silberschatz & Galvin  1994



Communication

The design of a communication network must
address four basic issues:

g Naming and name resolution: How do two
processes locate each other to communicate?

g Routing strategies. How are messages sent
through the network?

g Connection strategies. How do two processes
send a sequence of messages?

g Contention. The network is a shared resource, so
how do we resolve conflicting demands for its
use?

Operating System Concepts, Addison-Wesley  1994 15.8 Silberschatz & Galvin  1994



Naming and Name Resolution

g Name systems in the network.

g Address messages with the process-id.

g Identify processes on remote systems by

<host-name, identifier> pair.

g Domain name service (DNS) − specifies the nam-
ing structure of the hosts, as well as name to
address resolution (Internet).

Operating System Concepts, Addison-Wesley  1994 15.9 Silberschatz & Galvin  1994



Routing Strategies

g Fixed routing. A path from A to B is specified in
advance and does not change unless a hardware
failure disables this path.

- Since the shortest path is usually chosen, com-
munication costs are minimized.

- Fixed routing cannot adapt to load changes.

- Ensures that messages will be delivered in the
order in which they were sent.

g Virtual circuit. A path from A to B is fixed for
the duration of one session. Different sessions
involving messages from A to B may have dif-
ferent paths.

- Partial remedy to adapting to load changes.

- Ensures that messages will be delivered in the
order in which they were sent.

Operating System Concepts, Addison-Wesley  1994 15.10 Silberschatz & Galvin  1994



Routing Strategies (continued)

g Dynamic routing. The path used to send a mes-
sage from site A to site B is chosen only when a
message is sent.

- Usually a site sends a message to another site
on the link least used at that particular time.

- Adapts to load changes by avoiding routing
messages on heavily used path.

- Messages may arrive out of order. This prob-
lem can be remedied by appending a sequence
number to each message.

Operating System Concepts, Addison-Wesley  1994 15.11 Silberschatz & Galvin  1994



Connection Strategies

g Circuit switching. A permanent physical link is
established for the duration of the communication
(i.e., telephone system).

g Message switching. A temporary link is esta-
blished for the duration of one message transfer
(i.e., post-office mailing system).

g Packet switching. Messages of variable length
are divided into fixed-length packets which are
sent to the destination. Each packet may take a
different path through the network. The packets
must be reassembled into messages as they arrive.

Circuit switching requires setup time, but incurs less
overhead for shipping each message, and may waste
network bandwidth. Message and packet switching
require less setup time, but incur more overhead per
message.

Operating System Concepts, Addison-Wesley  1994 15.12 Silberschatz & Galvin  1994



Contention

Several sites may want to transmit information over
a link simultaneously. Techniques to avoid repeated
collisions include:

g CSMA/CD. Carrier sense with multiple access
(CSMA); collision detection (CD)

- A site determines whether another message is
currently being transmitted over that link. If
two or more sites begin transmitting at exactly
the same time, then they will register a CD and
will stop transmitting.

- When the system is very busy, many collisions
may occur, and thus performance may be
degraded.

CSMA/CD is used successfully in the Ethernet
system, the most common network system.

Operating System Concepts, Addison-Wesley  1994 15.13 Silberschatz & Galvin  1994



Contention (continued)

g Token passing. A unique message type, known
as a token, continuously circulates in the system
(usually a ring structure). A site that wants to
transmit information must wait until the token
arrives. When the site completes its round of
message passing, it retransmits the token. A
token-passing scheme is used by the IBM and
Apollo systems.

g Message slots. A number of fixed-length message
slots continuously circulate in the system (usually
a ring structure). Since a slot can contain only
fixed-sized messages, a single logical message
may have to be broken down into a number of
smaller packets, each of which is sent in a
separate slot. This scheme has been adopted in
the experimental Cambridge Digital Communica-
tion Ring.

Operating System Concepts, Addison-Wesley  1994 15.14 Silberschatz & Galvin  1994



Design Strategies

The communication network is partitioned into the
following multiple layers:

g Physical layer − handles the mechanical and
electrical details of the physical transmission of a
bit stream.

g Data-link layer − handles the frames, or fixed-
length parts of packets, including any error detec-
tion and recovery that occurred in the physical
layer.

g Network layer − provides connections and routes
packets in the communication network, including
handling the address of outgoing packets, decod-
ing the address of incoming packets, and main-
taining routing information for proper response to
changing load levels.

Operating System Concepts, Addison-Wesley  1994 15.15 Silberschatz & Galvin  1994



g Transport layer − responsible for low-level net-
work access and for message transfer between
clients, including partitioning messages into pack-
ets, maintaining packet order, controlling flow,
and generating physical addresses.

g Session layer − implements sessions, or process-
to-process communications protocols.

g Presentation layer − resolves the differences in
formats among the various sites in the network,
including character conversions, and half
duplex/full duplex (echoing).

g Application layer − interacts directly with the
users; deals with file transfer, remote-login proto-
cols and electronic mail, as well as schemas for
distributed databases.

Operating System Concepts, Addison-Wesley  1994 15.16 Silberschatz & Galvin  1994



Operating System Concepts, Addison-Wesley  1994 Silberschatz & Galvin  1994


